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1. Introduction

The original formulation of the AdS/CFT correspondence [1 – 3] involves a SYM theory

with maximal supersymmetry. First steps in the direction of studying the correspondence

with a lower number of supersymmetries were undertaken in [4].

If N = 1 superconformal invariance is required the field theory can be realized by

orbifold constructions [5] or by the exactly marginal deformations of the N = 4 SYM first

classified in [6]. The second class of theories has been extensively studied in a field theory

approach [6 – 9] and in the context of the AdS/CFT correspondence [10 – 14].

The interest in marginal deformed SYM theories has recently received a considerable

boost thanks to the work of Lunin–Maldacena [15] where the gravity dual of the so called

β–deformed theory has been proposed. It corresponds to the low energy limit of a string

theory on a deformed background AdS5 × S5
β obtained by SL(2,R) transforming the τ
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modulus of a two–torus inside S5. Alternatively, it can be obtained from the original

AdS5 × S5 solution by applying a TsT transformation in S5 [15 – 18].

A considerable effort has been devoted so far to provide tests of the correspondence in

its marginal deformed version. As for the AdS5 × S5 original correspondence, perturbative

properties of the field theory have been investigated: For the SU(N) case the condition

which constrains the couplings of the theory in order to have N = 1 superconformal

invariance has been determined perturbatively up to three loops [19 – 21]. In the large

N limit the exact superconformal condition has been found in [22]. Nonrenormalization

properties of operators in the chiral ring have been established perturbatively [19 – 21] and

multiloop amplitudes have been computed [20, 21, 23]. The exact anomalous dimensions

for spin–2 operators of the form Tr(ΦJ
1 Φ2) have been determined [22] for N , J unrelated

and large1. Finally, the gauge one–loop effective action has been computed [25] for a

particular background configuration. Nonperturbative instantonic effects have been also

considered [26].

Integrability properties of the original N = 4 SYM theory (see [27] for a review and list

of references) survive the β–deformation [28, 29, 16, 30, 31] and Bethe ansatz techniques can

be used also in this case to compute the spectrum of anomalous dimensions of composite

operators.

On the string theory side BPS states have been investigated in [32] for orbifold configu-

rations. Integrability properties have been exploited on the two sides of the correspondence

in order to match the energies of semiclassical fast rotating strings with one–loop anomalous

dimensions of scalar operators [33 – 37]. The spectrum of states has been also investigated

in the BMN limit [38, 39].

Non–supersymmetric generalizations of the Lunin–Maldacena β–deformation have be-

en proposed [16] and further investigations have been carried on [40, 17, 41 – 43]. Very

recently, deformations obtained by acting with TsT transformations in AdS5 have been

also proposed [44].

Finally, the Lunin–Maldacena deformation has been applied in the context of dipole

theories with the purpose of disentangling the KK modes (whose dynamics gets affected

by the deformation) from the gauge modes [45 – 49].

In a previous paper [20] we have initiated the study of the chiral ring of the SU(N)

β–deformed SYM theory by exploiting perturbative techniques in N = 1 superspace [50 –

54]. There we concentrated on the single–trace sector of the chiral ring: For the lowest

dimensional scalar operators we proved the vanishing of their anomalous dimensions up

to two loops and the appearance of finite corrections to their correlation functions, in

contradistinction to the N = 4 case. In particular, our two–loop results confirmed the

protection [19] of the operator Tr(ΦiΦj), i 6= j which was missing in the list of CPO’s of

the theory [10, 11, 15].

In this paper we intend to pursue our investigation and extend it to higher dimensional

sectors of the chiral ring for scalar chiral superfields. We work at finite N and take into

1The same kind of limit has been recently considered in [24] for studying magnons in the N = 4 SYM

theory.
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account mixing among sectors with different trace structures. Exploiting the definition of

quantum chiral ring we reduce the determination of protected operators up to order n in

perturbation theory to the evaluation of the effective superpotential up to order (n − 1).

Precisely, from the knowledge of the effective superpotential we determine perturbatively

all the quantum descendant operators of naive scale dimension ∆0, and find the CPO’s as

the operators which are orthogonal order by order to the descendants.

For the β–deformed theory we investigate the spin–2 sector2 and applying our proce-

dure to simple cases (∆0 = 4, 5) we determine the protected operators up to three loops.

In the sectors we have studied we can always define descendant operators which do not

receive quantum corrections. This seems to be a general property of the spin–2 operators:

Despite the nontrivial appearance of finite perturbative corrections to the effective action,

the quantum descendant operators defined in terms of the effective superpotential coincide

with their expressions given in terms of the classical superpotential (up to possible mixing

among them).

We then investigate the spin–3 sector where, due to the appearance of Konishi–like

anomalies, we need restrict our analysis at two loops in order to avoid dealing with mixed

gauge/scalar operators. Up to this order the descendant operators we consider are the

classical ones. However, in this sector we expect higher order corrections to the descendants

to appear together with a nontrivial dependence on the anomaly term. Therefore, the non–

renormalization properties of the descendant operators that we experiment for the spin–2

sector are not a general feature of the theory.

We generalize our procedure to the study of protected operators for the N = 1 super-

conformal theory associated to the full Leigh–Strassler deformation. Even if the gravity

dual of this theory is not known yet, it is anyway interesting to figure out the general

structure of its chiral ring. Still at finite N , we study explicitly the weight–2 and weight–3

sectors up to two loops and perform a preliminary analysis of the general sectors at least at

lowest order in the couplings. An interesting result we find is that, because of the discrete

Z3 symmetries of the theory, the sectors corresponding to conformal weights which are

multiple of 3 have a different operator structure from the other ones.

The plan of the paper is as follows: After an introductory section on the β–deformed

superconformal theory, in section 3 we introduce the definition of perturbative chiral ring

and discuss the general procedure we adopt to determine the CPO’s of the theory. In

section 4 we compute the perturbative effective superpotential up to two loops as required

to determine protected operators up to three loops. These are then the subject of sections

5 and 6 for the spin–2 and spin–3 sectors, respectively. In section 7 we study the more

general N = 1 superconformal theory described by the full Leigh–Strassler superpotential.

Some conclusions follow plus an appendix on loop integrals we used in our calculations.

2. Generalities on the β–deformed theory

Given the N = 4 SYM theory in N = 1 superspace notation we consider its deformation [6,

2We use the notation of [33] and call “spin–n” the sector containing operators made by products of n

different flavors.
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15]

S =

∫

d8z Tr
(

e−gV Φie
gV Φi

)

+
1

2g2

∫

d6z TrW αWα

+ih

∫

d6z Tr(q Φ1Φ2Φ3 − q̄ Φ1Φ3Φ2) − ih

∫

d6z̄ Tr(q̄ Φ1Φ3Φ2 − q Φ1Φ2Φ3)

(2.1)

where we have set q ≡ eiπβ, q̄ ≡ e−iπβ , β real. The gauge coupling g has been chosen to

be real in order to avoid dealing with instantonic effects, whereas h is generically complex.

The superfield strength Wα = iD
2
(e−gV DαegV ) is given in terms of a real prepotential

V and Φ1,2,3 contain the six scalars of the original N = 4 SYM theory organized into the

3× 3̄ of SU(3) subgroup of the R–symmetry group SU(4). We write V = V aTa, Φi = Φa
i Ta

where Ta are SU(N) matrices in the fundamental representation3.

The β–deformation breaks N = 4 supersymmetry to N = 1 and the original SU(4) R–

symmetry to U(1)R. However, two extra non–R–symmetry global U(1)’s survive. Applying

the a–maximization procedure [55] and the conditions of vanishing ABJ anomalies it turns

out that U(1)R is the one which assigns the same R–charge ω to the three elementary

superfields, whereas the charges with respect to the two non–R–symmetries U(1)1 ×U(1)2
can be chosen to be (Φ1,Φ2,Φ3) → (0, 1,−1) and (−1, 1, 0), respectively.

The action (2.1) possesses two extra discrete symmetries. One is the Z3 associated

to cyclic permutations of (Φ1,Φ2,Φ3) which is a remnant of the original SU(3) ⊂ SU(4)

symmetry of the undeformed theory, whereas the other one corresponds to exchanges

Φi ↔ Φj , i 6= j and q → −q̄ (β → 1 − β) (2.2)

The equations of motion for the chiral superfields are

D̄2(e−gV Φ̄a
1e

gV ) = −ihΦb
2Φ

c
3 [q(abc) − q̄(acb)] (2.3)

and cyclic, where (abc) ≡ Tr(T aT bT c).

At the quantum level the theory is superconformal invariant (and then finite) up to

two loops if the coupling constants satisfy the following condition (vanishing of the beta

functions) [19, 20]

|h|2
[

1 −
1

N2
|q − q̄|2

]

= g2 (2.4)

Superconformal invariance at three loops has been discussed in [21] for any N . In the large

N limit this condition reduces simply to |h|2 = g2, independently of the value of q. In [22]

it has been proven that this is the exact superconformal invariance condition for the large

N theory dual to the Lunin–Maldacena supergravity background [15].

In this paper we consider the N = 1 superconformal theory at finite N , perturbatively

defined by the condition (2.4) and investigate at the quantum level some sectors of its

chiral ring.

3For more details on our conventions we refer to [52 – 54, 20].
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3. The chiral ring of the β-deformed theory

We are interested in studying perturbatively the structure of the chiral ring for the β–

deformed theory (2.1). As discussed in [56], for a generic N = 1 SYM theory scalar

operators in the chiral ring can be constructed as products of scalar chiral superfields Φi

and/or times (W αWα), where Wα is the chiral field strength. In this paper we will focus

only on the Φ–sector, neglecting operators with a dependence on Wα.

In [10, 11, 15] the single–trace sector of the chiral ring has been identified as given by

chiral operators of the form Tr(ΦJ1
1 ΦJ2

2 ΦJ3
3 ) with weight ∆0 = J1+J2+J3 and (J1, J2, J3) =

(J, 0, 0), (0, J, 0), (0, 0, J), (J, J, J). In [19, 20] it has been shown perturbatively that also

the assignements (J1, J2, J3) = (1, 1, 0), (1, 0, 1), (0, 1, 1) give protected operators.

This classification identifies the CPO’s according to their dimension and their charges

with respect to the two U(1) global invariances of the theory. However, it does not give

any information on the precise form of the protected operator corresponding to a given set

(J1, J2, J3), which turns out to be in general a linear combination of single–trace operators

with different order of the fields inside the trace. Moreover, if we work at finite N , mixing

with multi–trace operators is also allowed.

A first example has been studied in [19] for the weight–3 sector. There, it has been

shown that the correct expression for the protected operator correponding to (J1, J2, J3) =

(1, 1, 1) is a linear combination

Tr(Φ1Φ2Φ3) + αTr(Φ1Φ3Φ2) (3.1)

where at one–loop

α =
(N2 − 2)q̄2 + 2

N2 − 2 + 2q̄2
(3.2)

showing an explicit dependence on the coupling β.

We are interested in the generalization of this result to higher loops in order to investi-

gate whether and how the linear combination gets modified order by order. Moreover, we

extend this analysis to other sectors of the chiral ring in order to discuss mixing at finite

N .

In general, given a set of primary operators Oi with the same dimension ∆0 and the

same global charges, we can read their anomalous dimensions perturbatively from the

matrix of the two–point correlation functions. Precisely, this matrix has the form

〈Oi(x)Oj(0)〉 =
1

x2∆0

(

Aij − ρij log µ2x2 + · · ·
)

(3.3)

where dots stay for higher powers in log µ2x2. Here A is the mixing matrix, whereas ρ

signals the appearance of anomalous dimensions. Both matrices are given as power series

in the couplings.

In order to determine the anomalous dimensions we need diagonalize the two matrices

by performing the linear transformation O′ = LO which maps the operators into an orthog-

onal basis of quasi–primaries. In a perturbative approach it is easy to see [57, 58] that the

diagonalization of the ρ matrix at order n fixes the correct orthogonalization (resolution of
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the mixing) at order (n − 1) uniquely, up to a residual rotation among operators with the

same anomalous dimension. This means that in general an order n calculation is required

to determine the anomalous dimensions at this order and the correct linear combinations

of operators Oi at order (n − 1) which correspond to quasi–primaries with well–defined

anomalous dimensions up to order n.

In our case, since we are interested into chiral primary operators, the procedure to

determine perturbatively the correct linear combination which corresponds to a protected

operator is made simpler if we also use the definition of chiral ring.

In our conventions the chiral ring is the set of chiral operators which cannot be written,

by using the equations of motion, as D̄2X, being X any primary operator.

In general, given a set of linearly independent chiral operators Ci, i = 1, · · · , s char-

acterized by the same classical scale dimension ∆0 and the same charges under the two

U(1) flavor groups they will mix and we need solve the mixing in order to compute their

anomalous dimensions. Since we are working with chiral operators, we know a priori that

once we have orthogonalized as C′
i = LijCj in order to have well–defined quasi–primary

operators, some of them will turn out to be descendant, i.e. they can be written as D̄2X

for some primary X. The remaining operators will be necessarily primary chirals with

vanishing anomalous dimensions.

Exploiting this simple observation, in order to find the correct expression for the pro-

tected operators, we then proceed as follows: In a given (J1, J2, J3) sector, we first select

all the descendants, that is all the linear combinations

Di =
∑

j

d
(i)
j Cj (3.4)

which satisfy the condition

Di = D̄2Xi (3.5)

Let us suppose that there are i = 1, . . . , r ≤ s independent linear combinations of this type.

Then, for a generic operator P =
∑

j cjCj we impose the orthogonality condition

〈PD̄i〉 = 0 i = 1, . . . , r (3.6)

where D̄ indicates the hermitian conjugate of D. These constraints provide r equations

for the s unknowns cj . In this way we select a (s − r)-dimensional subspace of operators

orthogonal to the descendant ones. We can choose an appropriate (orthogonal) basis in

this subset, obtaining (s − r) independent operators which are protected. This procedure

has been already applied in the undeformed N = 4 case [59].

The problem of determining the CPO’s of the theory is then traslated into the problem

of finding all the linear combinations of operators which satisfy the condition (3.5). In

particular, since we are interested into a perturbative determination of the chiral ring we

need find descendants which solve eq. (3.5) order by order in perturbation theory. This

can be done by introducing a perturbative definition of quantum chiral ring, as we are now

going to explain in detail.

– 6 –
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3.1 The perturbative quantum chiral ring

As previously discussed, the chiral ring is defined as the set of chiral operators orthogonal

to null operators, i.e. linear combinations of chirals which can be written in the form D̄2X,

X primary. At the classical level a linear combination (3.4) gives rise to a null operator

every time the coefficients d
(i)
j are such that the operator Di can be rewritten as a product

of chiral superfields times δW
δΦk

, where W is the classical superpotential4

W = ih [q Tr(Φ1Φ2Φ3) − q̄ Tr(Φ1Φ3Φ2)] (3.7)

Indeed, if this is the case, we can use the classical equations of motion D̄2Φ̄k = − δW
δΦk

to

express the operator as in (3.5). It follows that we can alternatively define the chiral ring

as

C = {chiral op.′s P | 〈PD̄〉 = 0, for any D ∼ (. . . Φ..Φ..
δW

δΦ
)} (3.8)

where in D we do not indicate trace structures and flavor charges explicitly. In the unde-

formed N = 4 theory, an immediate consequence of the definition (3.8) is that all the CPO’s

correspond to completly symmetric representations of the SU(3) ⊂ SU(4) R–symmetry

group [3].

This definition for the chiral ring allows for a straightforward generalization at the

quantum level. Since the quantum dynamics of the elementary superfields is driven by

the effective superpotential rather than the classical W , it appears natural to define the

quantum chiral ring as

CQ = {chiral op.′s P | 〈PD̄Q〉 = 0, for any DQ ∼ (..Φ . . . Φ . . .
δWeff

δΦ
)} (3.9)

where now DQ is a quantum null operator. Using the quantum equations of motion

D̄2 δK
δΦi

= −
δWeff

δΦi
where K is the effective Kähler potential which takes into account pos-

sible perturbative D–term corrections, it is easy to see that DQ is a null operator at the

quantum level. In the undeformed N = 4 case the symmetries of the theory constrain DQ

to be proportional to D and the quantum chiral ring coincides with the classical one (3.8).

When Weff is determined perturbatively, eq. (3.9) gives a perturbative definition of

chiral ring. Precisely, given Weff at a fixed perturbative order5

Weff = W + λW
(1)
eff + λ2W

(2)
eff + · · · + λLW

(L)
eff (3.10)

we can construct independent descendants 6 at that order as

D = D0 + λD1 + λ2D2 + · · · + λLDL , Di = Φ . . .
δW

(i)
eff

δΦ
(3.11)

4This is true only for operators which are not affected by Konishi–like anomalies or as long as these

anomalies do not enter the actual calculation (see the discussion at the beginning of section 6).
5In principle, perturbative corrections to Weff would depend on both g and h couplings. Here we mean

to use the superconformal invariance condition to express |h|2 as a function of g2 and write the perturbative

expansion in powers of the ’t Hooft coupling λ = g2N

4π2 .
6As long as we are interested in orthogonalizing with respect to the whole space generated by the de-

scendants, we do not need the precise form of pure descendants, but just a suitable set of linear independent

states. From now on we will refer to this definition of quantum descendants.
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and determine the protected operators P by imposing the orthogonality condition 〈PD̄〉 =

0 order by order. Since P will be in general a linear combination of single/multitrace

operators, these conditions allow to determine the coefficients of the linear combination

order by order in the couplings. If we set

P = P0 + λP1 + λ2P2 + · · · + λLPL (3.12)

the perturbative corrections Pj will be determined by

O(λ0) : 〈P0D̄0〉0 = 0

O(λ1) : 〈P0D̄1〉0 + 〈P0D̄0〉1 + 〈P1D̄0〉0 = 0 (3.13)

...
...

O(λL) : 〈P0D̄L〉0 + 〈P0D̄L−1〉1 + · · · + 〈P0D̄0〉L + 〈P1D̄L−1〉0 + · · · + 〈PLD̄0〉0 = 0

where 〈 〉j stands for the two–point function at order λj .

Conditions (3.13) together with the general statement that orthogonalization at order

(n − 1) is sufficient for having well–defined quasi–primary operators at order n, brings us

to formulate the following prescription: In order to determine perturbatively the correct

form of chiral operators with vanishing anomalous dimension at order n it is sufficient to

determine the effective superpotential at order (n− 1), select all the descendant operators

at that order by (3.11) and impose the conditions (3.13) up to order (n − 1). In so doing,

we gain a perturbative order at each step. Moreover, in order to have all the descendants

at a given order it is sufficient to compute the effective superpotential once for all.

As follows from its definition, the structure of the chiral ring is directly related to

the structure of the effective superpotential. Therefore, the perturbative corrections to the

CPO’s depend on the perturbative corrections to the effective superpotential. In particular,

this explains universality properties of the protected operators we will discuss in section 5,

as for example the fact that in any case the orthogonalization at tree level is sufficient for

the protection up to two loops.

4. The effective superpotential at two–loops

Since we are dealing with a superconformal (finite) theory any correction to the effective ac-

tion must be finite. By definition, the effective superpotential corresponds to perturbative,

finite F–terms evaluated at zero momenta. It is given by local contributions which are con-

strained by dimensions, U(1) × U(1) flavor symmetry charges, reality and symmetry (2.2)

to have necessarily the form

Weff = ih
[

b Tr(Φ1Φ2Φ3) − b̄ Tr(Φ1Φ3Φ2)
]

+ h.c. (4.1)

The constant b is given as an expansion in the couplings, b = q(1 + b1λ + b2λ
2 + · · ·), with

coefficients bj which are functions of q and N , whereas b̄ is the hermitian conjugate. We

note that in principle the symmetries of the theory would only constrain the form of the

superpotential to Weff = {ih [b(q) Tr(Φ1Φ2Φ3) + b(−q̄) Tr(Φ1Φ3Φ2)] + h.c.}. However,

– 8 –
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it is easy to show that b(−q̄) = −b(q) since the bj coefficients are rational functions of q2

with real coefficients (loop diagrams always give real contributions and they always contain

an even number of extra chiral vertices compared to the tree–level vertex).

At a given order L we can have two kinds of corrections to Weff : Corrections which

do not mix the two terms in the superpotential and are then of the form

W
(L)
eff ∼ λL W (4.2)

where W is the classical superpotential. These contributions do not affect the structure of

the descendant operators at order L since
δW

(L)
eff

δΦ ∼ δW
δΦ and DL ∼ D0. As a consequence

at order L the correlation function 〈P0D̄L〉0 in (3.13) vanishes and the protected operator

is determined only by loop corrections to its two–point function with descendants of lower

orders.

The second kind of corrections to Weff mixes the two terms in W and gives rise to

a linear combination W
(L)
eff of the form (4.1) which is not proportional to the classical

superpotential anymore. For these corrections the request for the protected operator to

be orthogonal to a descendant proportional to
δW

(L)
eff

δΦ modifies in general its structure by

contributions of order λL proportional to 〈P0D̄L〉0.

In this section we evaluate explicitly the effective superpotential up to two loops. Our

result is useful for determining the correct CPO’s up to three loops.

The diagrams contributing to the effective superpotential up to this order are given in

figure 1 where the grey bullets indicate the one–loop corrections to the chiral and gauge–

chiral vertices, respectively. These corrections are exactly the ones of the undeformed

N = 4 theory once we use the one–loop superconformal invariance condition (2.4).

Figure 1: Diagrams contributing to the effective superpotential up to two loops.

The one–loop diagram 1b), compared with the tree level diagram 1a), does not contain

any extra q–deformed vertex. Moreover, using standard color identities it is easy to see

that its contribution is proportional to λW , where W is the classical superpotential.

– 9 –



J
H
E
P
0
8
(
2
0
0
6
)
0
7
2

The same happens at two loops for the diagrams 1c), 1d) and 1e) which do not contain

any extra q–deformed vertex and have a color structure which does not mix the two traces,

so reproducing W .

Diagram 1f) vanishes for color reasons.

Diagram 1g) contains four extra q–deformed vertices. Moreover, by direct inspection

one can easily see that the nonplanar chiral structure which corrects the tree level dia-

gram mixes nontrivially the two terms of W . As a result at two loops the superpotential

undergoes a nontrivial modification of the form

W
(2)
eff ∼ ih

[

q P Tr(Φ1Φ2Φ3) − q̄ P̄ Tr(Φ1Φ3Φ2)
]

+ h.c. (4.3)

with

P =
(q2 − 1)3[N2 + 3 + q2(3N2 − 10 + 7q2)]

q2[q4 + 1 + (N2 − 2)q2]2
(4.4)

Here we have used q̄ = 1/q. We note that the nontrivial q–dependence of this diagram is a

direct consequence of its nonplanarity. In fact, as discussed in [22] planar diagrams depend

on the particular combination qq̄ = 1, while the nonplanar ones have generically nontrivial

phases. Moreover, a q–dependence has also been introduced by using the superconformal

condition (2.4) to express the coefficient |h|4 from the four chiral vertices in terms of λ2.

To evaluate the various contributions from figure 1 we first perfom D–algebra to re-

duce superdiagrams to ordinary loop diagrams and compute the corresponding integrals in

momentum space (for the description of the procedure and our conventions we refer to [52 –

54, 20]). As reported in appendix A the one and two–loop integrals are all finite and they

give a well–defined, local value for external momenta set to zero. Therefore, collecting all

the contributions, at two loops the superpotential has the structure (4.1) with

b = q

[

(1 + λc1 + λ2c2) + λ2 3

8
ζ(3)P

]

(4.5)

where the coefficients c1, c2 are numbers, independent of q and N , determined by the loop

integrals 1b) and 1c)–1e), respectively (we do not need their explicit values).

It follows that in general a descendant at this order will have the form

DQ = (1 + λc1 + λ2c2)D0 + λ2D2 (4.6)

with D2 6= D0.

5. Chiral Primary Operators in the spin–2 sector

5.1 The (J, 1, 0) flavor

We start considering operators of the form Tr(ΦJ
1 Φ2). In this case, due to the ciclicity of

the trace, there is no ambiguity in the ordering of the operators inside the trace. In the

large N limit these operators do not belong to the chiral ring, they are descendants and

their anomalous dimensions have been computed exactly [22] for J large. However, for

finite N they can mix with multitraces and give rise to linear combinations of single and
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multi–trace operators which are protected. We are going to construct them perturbatively

up to three loops. For simplicity we consider first the particular cases of J = 3, 4 and

postpone the discussion for generic J at the end of this section.

The (3, 1, 0) case: The first nontrivial example where mixing conspires to give rise to pro-

tected operators is for J = 3. This sector contains the two operators

O1 = Tr(Φ3
1Φ2) , O2 = Tr(Φ2

1)Tr(Φ1Φ2) (5.1)

Using the classical equations of motion (2.3), it is easy to see that

D̄2Tr(Φ2
1e

−gV Φ̄3e
gV ) = Tr

(

Φ2
1

δW

δΦ3

)

= −ih (q − q̄) [Tr(Φ3
1Φ2)−

1

N
Tr(Φ2

1)Tr(Φ1Φ2)] (5.2)

and a descendant can be constructed as (we always forget about the normalization of the

operators)

D0 = O1 −
1

N
O2 (5.3)

The knowledge of D0 allows us to determine the one–loop protected operator. We consider

the linear combination

P0 = O1 + α0 O2 (5.4)

which, for any α0 6= − 1
N

, gives an operator in the chiral ring. We then impose the

orthogonality condition 〈P0 D̄0〉0 = 0 and find

α0 = −
N2 − 6

2N
(5.5)

This result coincides with the one found in [21] where the one–loop CPO has been deter-

mined by diagonalizing directly the one–loop anomalous dimension matrix.

In order to extend our analysis to higher loops we need establish the correct form of the

descendant operator order by order, as described in section 3. If we look at its perturbative

definition (3.11) and the way the equations of motion work in this case, we easily realize

that as long as the effective superpotential has the structure (4.1) we obtain

Tr

(

Φ2
1

δWeff

δΦ3

)

= −ih
(

b − b̄
)

[Tr(Φ3
1Φ2) −

1

N
Tr(Φ2

1)Tr(Φ1Φ2)] (5.6)

whatever b might be (determined perturbatively at a given order). It follows that the

linear combination on the r.h.s. of this equation, which is nothing but the operator (5.3), is

always a descendant operator independently of the order we have computed the coefficient

b. Therefore we conclude that (5.3) is the exact quantum descendant up to an overall

coupling–dependent normalization factor, that is DQ ∼ D0.

An alternative way [59] to establish the relation DQ ∼ D0 is to consider the combination

D̄2Tr(Φ2
1e

−gV Φ̄3e
gV ) + ih (q − q̄) [Tr(Φ3

1Φ2) −
1

N
Tr(Φ2

1)Tr(Φ1Φ2)] (5.7)

which is zero at tree level and check that it is order by order orthogonal to the three

monomials D̄2Tr(Φ2
1e

−gV Φ̄3e
gV ), Tr(Φ3

1Φ2) and Tr(Φ2
1)Tr(Φ1Φ2), separately. In fact, if this

– 11 –
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is the case, there is no extra mixing of the linear combination (5.7) with the three operators

at the quantum level and (5.7) must be necessarily zero at any order in perturbation theory.

We have checked the absence of mixing perturbatively up to two loops confirming our

conclusion.

In order to determine the protected operator we consider the linear combination

P = O1 + αO2 (5.8)

with α given as an expansion in λ

α = α0 + α1 λ + α2 λ2 + O(λ3) (5.9)

In the notation of section 3 we have P0 = O1 + α0O2 with α0 already determined in (5.5)

and Pj = αjO2.

As a consequence of the relation DQ ∼ D0 the orthogonality conditions (3.13) become

O(λ) : 〈P0D̄0〉1 + 〈P1D̄0〉0 = 0 (5.10)

O(λ2) : 〈P0D̄0〉2 + 〈P1D̄0〉1 + 〈P2D̄0〉0 = 0 (5.11)

The first condition (5.10) gives

α1 = −
〈(O1 + α0O2)D̄0〉1

〈O2D̄0〉0
(5.12)

In order to select the diagrams which contribute to the two–point function at the numerator

we note that the tree level correlation function at the denominator, when computed in

momentum space and in dimensional regularization (n = 4 − 2ε), is 1/ε divergent. This

divergence signals the well–known short distance singularity of any two–point function of

a conformal field theory.

If the denominator of (5.12) goes as 1/ε, in the numerator we can consider only diver-

gent diagrams (finite diagrams would not contribute in the ε → 0 limit). It is easy to show

that at this order the only diagram which we need take into account is the one in figure 2

where on the left hand side we have an insertion of the operator (O1 + α0O2) while on the

right hand side we have D̄0.

Figure 2: One–loop diagram contributing to the evaluation of α1.

By a direct calculation one realizes that if α0 is chosen as in (5.5) this diagram vanishes.

The reason is very simple to understand: If we cut the diagram vertically at the very right
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end, close to the D̄0 vertex, from the calculation it comes out that the left part would be

nothing but a one–loop divergent contribution to the operator (O1 +α0O2) which vanishes

since α0 has been determined just to give a protected (not renormalized) operator at one–

loop.

From the one–loop constraint we then read α1 = 0 and the expression (5.4) with α0

as in (5.5) corresponds to the protected chiral operator up to two loops.

Next we analyze the constraint (5.11). Setting P1 = 0 there, we obtain

α2 = −
〈(O1 + α0O2) D̄0〉2

〈O2 D̄0〉0
(5.13)

and consequently the exact expression for the CPO up to three loops.

Again we select only divergent diagrams contributing to the numerator. They are given

in figure 3. We have not drawn diagrams associated to the two–loop anomalous dimension

of the operator (O1 + α0O2) which vanish when α0 is chosen as in (5.5).

Figure 3: Two-loop diagrams contributing to the evaluation of α2.

These diagrams contribute nontrivially to α2 since, cutting the graphs at the very right

hand side, their left parts cannot be recognized as corrections to the tree–level operator

(nontrivial mixing between O1 and O2 occurs). Evaluating the diagrams by using the

results in appendix A we obtain

α2 =
9(N2 − 9)(q2 − 1)2[(N4 − 8N2 − 8)(q4 + 1) + 2(N4 + 8)q2]

80N [q4 + 1 + (N2 − 2)q2]2
ζ(3) (5.14)

where we have used the one–loop superconformal condition (2.4) to express all the contri-

butions of figure 3 in terms of λ2 and set q̄ = 1/q.

Therefore the protected operator P up to three–loops can be written as

P = O1 −
N2 − 6

2N
(1 + r λ2)O2 (5.15)
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with

r =
α2

α0
= −

9(N2 − 9)(q2 − 1)2[(N4 − 8N2 − 8)(q4 + 1) + 2(N4 + 8)q2]

40(N2 − 6)[q4 + 1 + (N2 − 2)q2]2
ζ(3) (5.16)

We note that in the ’t Hooft limit, N → ∞ and λ fixed, O2 dominates and gives the

protected operator up to three loops. This is consistent with the fact that, in the absence

of mixing, the only primary operators in a given ∆0 sector are necessarily products of

single–trace primaries Tr(Φm
1 ) and Tr(Φ1Φ2).

The (4, 1, 0) case: It is interesting to analyze this case in detail since it is the first case

where more than one descendant appears.

This sector contains three independent operators

O1 = Tr(Φ4
1Φ2) , O2 = Tr(Φ3

1)Tr(Φ1Φ2) , O3 = Tr(Φ2
1)Tr(Φ2

1Φ2) (5.17)

Using the classical equations of motion (2.3), we can write

D̄2Tr(Φ3
1e

−gV Φ̄3e
gV ) = Tr

(

Φ3
1

δW

δΦ3

)

= −ih (q − q̄) [Tr(Φ4
1Φ2) −

1

N
Tr(Φ3

1)Tr(Φ1Φ2)]

(5.18)

D̄2
[

Tr(Φ2
1)Tr(Φ1e

−gV Φ̄3e
gV )

]

= Tr(Φ2
1)Tr

(

Φ1
δW

δΦ3

)

= −ih (q − q̄)Tr(Φ2
1)Tr(Φ2

1Φ2)

(5.19)

Therefore, in this case we can consider the two descendants

D
(1)
0 = O1 −

1

N
O2 , D

(2)
0 = O3 (5.20)

or any linear combination which realizes an orthogonal basis in the subspace of weight–5

descendants.

As in the previous example it is easy to prove that, given the particular structure (4.1)

of the effective superpotential and the way the equations of motion enter the calculation,

the linear combinations D
(1)
0 and D

(2)
0 provide two independent descendants even at the

quantum level.

Proceeding as before we consider the linear combination

P = O1 + αO2 + β O3 (5.21)

and choose the constants α and β (expanded in powers of λ) by requiring P to be orthogonal

to the two descendants up to two loops.

Solving the constraints 〈P0D̄
(i)
0 〉0 at tree level we determine the correct expression for

the operator characterized by a vanishing one–loop anomalous dimension

P0 = O1 −
N2 − 12

3N
O2 −

2

N
O3 (5.22)

As in the previous case, this operator is automatically orthogonal to D
(1)
0 and D

(2)
0 also at

one loop and so we expect it to be protected up to two loops.
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The orthogonality at two loops can be imposed exactly as in the previous case and

allows to determine the corrections α2 and β2. The diagrams contributing are still the ones

in figure 3 with one extra free chiral line running between the two vertices. Performing the

calculation we find the final expression for the operator protected up to three loops

P = O1 −
N2 − 12

3N
(1 + s1 λ2)O2 −

2

N
(1 + s2 λ2)O3 (5.23)

where

s1 =
α2

α0
=

(N2 − 16)(q2 − 1)2 [(11N2 + 21)(q4 + 1) + 2(N2 − 21)q2]

4(N2 − 12)[q4 + 1 + (N2 − 2)q2]2
ζ(3)

s2 =
β2

β0
= −

(N2 − 16)(q2 − 1)2[(N2 + 5)(q4 + 1) + 2(N2 − 5)q2]

8[q4 + 1 + (N2 − 2)q2]2
ζ(3) (5.24)

Again, the coefficients depend on N in such a way that in the large N limit only the O2

operator in (5.17) survives in agreement with the chiral ring content of the theory in the

planar limit.

We note that these coefficients, as well as r in (5.16) are real. This is a consequence

of the fact that in the sectors studied so far the descendant operators are q–independent

and the two–point correlation functions are real.

The previous analysis can be applied to the generic operators of the form (ΦJ
1 Φ2).

The peculiar pattern DQ ∼ D0 for the descendants occurs in any (J, 1, 0) sector since it

only depends on the particular structure of the superpotential and the particular way the

equations of motion work for this class of operators. Therefore, the determination of CPO’s

proceeds as before. In particular, we expect the tree level orthogonality condition to be

still sufficient for protection up to two loops since the only one–loop diagram relevant for

the calculation would be the vanishing one–loop anomalous dimension diagram in figure 2.

At two loops diagrams of the kind drawn in figure 3 should be still the only relevant ones.

Without entering the details of the calculations which would be quite involved and

not very illuminating, we can determine the dimension of the corresponding chiral ring

subspace, i.e. the number of independent protected operators corresponding to U(1) flavors

(J, 1, 0).

To be definite we consider J even (J = 2p). In this case the list of chirals we can

construct is

single − trace Tr(Φ2p
1 Φ2)

double − trace Tr(Φm1
1 ) Tr(Φ2p−m1

1 Φ2) m1 = 2, . . . , 2p − 1

triple − trace Tr(Φm1
1 ) Tr(Φm2

1 ) Tr(Φ2p−m1−m2
1 Φ2)

m1 = 2, . . . , p − 1, m2 = m1, . . . , 2p − 1 − m1

...

p−trace Tr(Φ2
1) · · ·Tr(Φ2

1) Tr(Φ2
1Φ2) , Tr(Φ3

1) Tr(Φ2
1) · · ·Tr(Φ2

1) Tr(Φ1Φ2)

(5.25)
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In order to find how many independent primaries we can construct out of (5.25) we need

first count how many descendants of the form (3.5) we have. As explained in the previous

simple examples, given the generic n–trace, ∆0 = J sector, null conditions come from

considering the operators

Tr(Φm1
1 ) · · ·Tr(Φ

mn−1

1 )D̄2Tr(Φ
2p−1−m1−···−mn−1

1 e−gV Φ̄3e
gV ) (5.26)

as long as 2p − 1 − m1 − · · · − mn−1 ≥ 1. In fact, once we act with D̄2 on Φ̄3 and use the

equations of motion (2.3) we generate the linear combination

Tr(Φm1
1 ) · · ·Tr(Φ

mn−1

1 )Tr(Φ
2p−m1−···−mn−1

1 Φ2)

−
1

N
Tr(Φm1

1 ) · · ·Tr(Φ
mn−1

1 )Tr(Φ
2p−1−m1−···−mn−1

1 )Tr(Φ1Φ2) (5.27)

which is then a descendant. Therefore, the complete list of descendants is

single − trace D̄2 Tr(Φ2p−1
1 e−gV Φ̄3e

gV )

double − trace D̄2
[

Tr(Φm1
1 ) Tr(Φ2p−1−m1

1 e−gV Φ̄3e
gV )

]

m1 = 2, . . . , 2p − 2

triple − trace D̄2
[

Tr(Φm1
1 ) Tr(Φm2

1 ) Tr(Φ2p−1−m1−m2
1 e−gV Φ̄3e

gV )
]

m1 = 2, . . . , p − 1, m2 = m1, . . . , 2p − 2 − m1

...

p−trace D̄2
[

Tr(Φ2
1) · · · Tr(Φ2

1) Tr(Φ1e
−gV Φ̄3e

gV )
]

(5.28)

Counting how many operators we have in (5.25) and subtracting the number of descendants

in (5.28) we find that the number of protected chiral operators is
∑p

n=2 Xn where Xn is

the number of partitions of (2p − 1) objects into (n − 1) boxes with at least 2 objects per

box. Analogously, the number of chiral primary operators for J odd is
∑p+1

n=2 Xn.

This result is consistent with the number of primary operators which survive in the

large N limit where mixing effects disappear and the chiral ring reduces to products of

single–trace operators Tr(Φk
1), Tr(Φ1Φ2).

5.2 The (2, 2, 0) flavor

In the class of more general operators with weights (J1, J2, 0) we consider the particular

case J1 = J2 = 2. This sector contains four operators, two single– and two double–traces

O1 = Tr(Φ2
1Φ

2
2) , O2 = Tr(Φ1Φ2Φ1Φ2)

O3 = Tr(Φ2
1)Tr(Φ2

2) , O4 = Tr(Φ1Φ2)Tr(Φ1Φ2) (5.29)

Using the classical equations of motion (2.3), we can write

D̄2
[

Tr(Φ1Φ2e
−gV Φ̄3e

gV ) − Tr(Φ2Φ1e
−gV Φ̄3e

gV )
]

= −ih(q + q̄)[O2 −O1]

D̄2
[

Tr(Φ1Φ2e
−gV Φ̄3e

gV ) + Tr(Φ2Φ1e
−gV Φ̄3e

gV )
]

= −ih(q − q̄)[O1 + O2 −
2

N
O4]

(5.30)
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We note that on the right hand side of these equations the q–dependence is still factored

out as it happened in the previous cases (see eqs. (5.2), (5.19)). Therefore, tree level

descendants can be defined as linear combinations

D
(1)
0 = O2 −O1

D
(2)
0 = O1 + O2 −

2

N
O4 (5.31)

Because of their q–independence these operators correspond indeed to a suitable choice of

quantum descendants.

The general structure of a chiral primary operator in this sector is

P = αO1 + β O2 + γ O3 + δO4 (5.32)

where the coefficients are determined order by order by the orthogonality conditions 〈P

D̄
(1)
0 〉 and 〈PD̄

(2)
0 〉. Having two conditions for four unknowns we expect to single out two

protected operators.

At tree level, for the particular choice α0 = 2, β0 = 1 and α0 = 1, β0 = −1, we find

P(1) = 2O1 + O2 −
N2 − 6

2N
(O3 + 2O4)

P(2) = O1 −O2 −
N

4
O3 + NO4 (5.33)

These are one–loop protected operators and coincide with the ones found in [21]. They are

not orthogonal but a basis can be easily constructed by considering linear combinations.

According to the general pattern already discussed for the previous cases we expect

the operators (5.33) to be protected up to two loops. The condition for these operators to

be protected up to three loops requires instead nontrivial λ2–corrections to (5.33) which

can be determined by solving the orthogonality constraints at this order. The diagrams

contributing nontrivially to the 2–point functions are still the ones in figure 3. Since the

final expressions are quite unreadable, we find convenient to fix α2 = β2 = 0 for both the

CPO’s and we obtain

P(1) = 2O1 + O2 −
N2 − 6

2N
(1 + t1 λ2)O3 −

N2 − 6

N
(1 + t2 λ2)O4

P(2) = O1 −O2 −
N

4
(1 + u1 λ2)O3 + N(1 + u2 λ2)O4

(5.34)

where

t1 = −
9(N2 − 9)(q2 − 1)2[(N4 − 6N2 − 4)(q4 + 1) + 2(N4 − 2N2 + 4)q2]

20(N2 − 6)[q4 + 1 + (N2 − 2)q2]2
ζ(3)

t2 =
9(N2 − 9)(N2 + 2)(q2 − 1)4

10(N2 − 6)[q4 + 1 + (N2 − 2)q2]2
ζ(3) (5.35)
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and

u1 =−
9(q2 − 1)2[(N6−9N4−16N2+18)(q4 + 1) + 2(N6 − 14N4 + 34N2 − 18)q2]

20N2[q4 + 1 + (N2 − 2)q2]2
ζ(3)

u2 =
9(q2 − 1)2[(N4 − 31N2 − 18)(q4 + 1) − 2(7N4 − 13N2 − 18)q2]

40N2[q4 + 1 + (N2 − 2)q2]2
ζ(3) (5.36)

6. Chiral Primary Operators in the spin–3 sector

This sector contains operators of the form (Φk
1Φ

l
2Φ

m
3 ) with all possible trace structures.

The simplest case is for k = l = m = 1 and involves the two weight–3 operators

O1 = Tr(Φ1Φ2Φ3) , O2 = Tr(Φ1Φ3Φ2) (6.1)

As already mentioned, the correct one–loop expression for the protected operator has been

determined in [19] by computing directly the anomalous dimension at that order. It turns

out that the protected operator is a linear combination of the two operators (6.1) with

coefficient α as in (3.2). The result has been confirmed in [21] by using a simplified approach

based on the evaluation of the difference between the one–loop two–point function of the

deformed theory and the one for the N = 4 case. This approach is very convenient since it

avoids computing many graphs containing gauge vertices but, as recognized by the authors,

in this case it cannot be pushed beyond one loop.

Using our procedure, we can easily re-derive the Freedman–Gursoy result by working

at tree level and extend it to two–loops by performing a one–loop calculation. The correct

application of our procedure beyond this order would require a substantial modification in

the definition of quantum chiral ring (3.9) since in this sector descendants of Konishi–like

operators are present and the equations of motion need be supplemented by the Konishi

anomaly term. As a consequence the corresponding chiral ring sector necessarily contains

operators depending on W αWα.

In fact, from the anomalous conservation equation for the Konishi current we can write

D̄2Tr(e−gV Φ̄ie
gV Φi) = −3ih[q Tr(Φ1Φ2Φ3) − q̄Tr(Φ1Φ3Φ2)] +

1

32π2
Tr(W αWα) (6.2)

We remind that in our conventions Wα = iD̄2(e−gV DαegV ) and it is at least of order g.

From the previous identity it follows that a descendant operator has to be constructed out

of the two operators (6.1) plus the anomaly term

D0 = qO1 − q̄O2 +
i

96π2 h
Tr(W αWα) (6.3)

However, since the operator Tr(W αWα) is of order g2 and has vanishing tree level two–

point function with O1 and O2 it does not enter the orthogonality conditions at tree level

and one–loop. Therefore we can safely use our procedure to find CPO’s up to two loops

forgetting about the anomaly.

Thus we consider the linear combination

P0 = O1 + α0 O2 (6.4)
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for any value of α0 6= −q̄2. In order to determine the exact expression for the CPO at

one–loop we need impose the operator to be orthogonal to the descendant (6.3) at tree

level. A simple calculation proves that 〈P0D̄0〉0 = 0 iff α0 is given in (3.2), in agreement

with the result of [19].

At one loop first we need determine the correct expression for the descendant at this

order. As it follows from the calculations of section 3 at one loop the effective superpotential

is proportional to the tree level W and the corresponding descendant operator is still

proportional to D0 in eq. (6.3). Given the generic linear combination P = O1 + (α0 +

α1λ)O2 we then impose the orthogonality condition up to order λ to uniquely determine

α1 as in (5.12). As in the previous examples, if α0 is given in (3.2) the α1 coefficient is

identically zero being this a consequence of the one–loop protection of P0. Therefore the

expression (6.4) with α0 given in (3.2) corresponds to the protected chiral operator up to

two loops.

The next case we investigate is for k = 2, l = m = 1. There are five operators

O1 = Tr(Φ2
1Φ2Φ3) , O2 = Tr(Φ2

1Φ3Φ2) , O3 = Tr(Φ1Φ2Φ1Φ3)

O4 = Tr(Φ2
1)Tr(Φ2Φ3) , O5 = Tr(Φ1Φ2)Tr(Φ1Φ3) (6.5)

Using the classical equations of motion (2.3) we can write three descendants

D
(1)
0 = qO3 − q̄O2 −

1

N
(q − q̄)O5

D
(2)
0 = qO1 − q̄O3 −

1

N
(q − q̄)O5 (6.6)

D
(3)
0 = qO1 − q̄O2 −

1

N
(q − q̄)O4

We expect to find out two protected operators of the form

P = αO1 + β O2 + γ O3 + δO4 + εO5 (6.7)

By imposing the tree-level orthogonality condition with respect to the three D
(i)
0 we can

fix for instance γ, δ and ε in terms of α and β. The calculation proceeds exactly as in the

previous case and we find

γ =
α[q4 − 2q2 + 1 − N2] − β[(1 − N2)q4 − 2q2 + 1]

N2(q4 − 1)

δ =
α[(N2 + 2)q4 + 2(N2 − 2)q2 + N4 − 5N2 + 2]

2N3(q4 − 1)

−
β[(N4 − 5N2 + 2)q4 + 2(N2 − 2)q2 + N2 + 2]

2N3(q4 − 1)

ε =
α[2(N2 + 1)q4 + (N4 − 4)q2 + N4 − 4N2 + 2]

N3(q4 − 1)

−
β[(N4 − 4N2 + 2)q4 + (N4 − 4)q2 + 2(N2 + 1)]

N3(q4 − 1)
(6.8)
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We expect these operators to have a vanishing anomalous dimension at one loop. If we set

α = β = 1 and α = −β = 1, we recover the two protected operators found in [21].

As in the previous cases, the operators D
(1)
0 , D

(2)
0 and D

(3)
0 keep being good descen-

dants at one loop. Moreover, the one–loop orthogonality conditions do not modify the

CPO’s (6.7), (6.8) and we expect these operators to have a vanishing two–loop anomalous

dimension.

If we were to push our calculation beyond this order we should first determine the

descendant operators at two loops. It is easy to realize that in this case the relation

DQ ∼ D0 does not hold anymore, for two simple reasons:

1) At higher orders the Konishi anomaly cannot be ignored anymore. In particular, the

correct expression for the descendant operators from two loops on will have a nontrivial

dependence on (W αWα).

2) Differently from the spin–2 case, the nontrivial corrections to the effective superpotential

which appear at two loops determine nontrivial corrections to the descendants since in this

case they depend on q not only through an overall coefficient (see eq. (6.6)).

7. The full Leigh–Strassler deformation

From a field theory point of view it is interesting to investigate the quantum properties

of the full Leigh-Strassler N = 1 deformation of the N = 4 SYM theory given by the

action [6]

S =

∫

d8zTr(e−gV Φ̄ie
gV Φi) +

1

2g2

∫

d6zTr(W αWα)

+

{

ih

∫

d6zTr(q Φ1Φ2Φ3 − q̄ Φ1Φ3Φ2) +
ih′

3

∫

d6zTr(Φ3
1 + Φ3

2 + Φ3
3) + h.c.

}

(7.1)

The superpotential now breaks the original SU(4) R–symmetry to U(1)R and no extra

U(1)’s are left. However, the action is still invariant under the cyclic permutation of

(Φ1,Φ2,Φ3) and the symmetry (2.2). Moreover, a second Z3 is left corresponding to

(Φ1,Φ2,Φ3) → (Φ1, zΦ2, z
2Φ3) (7.2)

where z is a cubic root of unity.

The equations of motion derived from (7.1) are

D̄2(e−gV Φ̄a
1e

gV ) = −ihΦb
2Φ

c
3 [q(abc) − q̄(acb)] − ih′Φb

1Φ
c
1(abc)

D̄2(e−gV Φ̄b
2e

gV ) = −ihΦa
1Φ

c
3 [q(abc) − q̄(acb)] − ih′Φa

2Φ
c
2(abc) (7.3)

D̄2(e−gV Φ̄c
3e

gV ) = −ihΦa
1Φ

b
2 [q(abc) − q̄(acb)] − ih′Φa

3Φ
b
3(abc)

As discussed in [60, 6] the request for the anomalous dimensions of the elementary chiral

superfields to vanish guarantees the theory to be superconformal invariant. Since the three

chirals have the same anomalous dimension due to the cyclic Z3 symmetry, superconformal
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invariance requires a single condition γ(g, h, h′, β) = 0 and we find a three–dimensional

complex manifold of fixed points.

In general we do not know the superconformal condition exactly. However it is possible

to perform a perturbative analysis and define the superconformal theory order by order in

the couplings.

To this purpose we evaluate the anomalous dimension of the chiral superfield Φi up to

two loops. The calculation can be carried on exactly as in the case of h′ = 0 by taking into

account that compared to the previous case the present action contains three extra chiral

vertices of the form ih′

6 dabcΦ
a
i Φ

b
iΦ

c
i , i = 1, 2, 3.

As long as we deal with diagrams which do not contain the new h′ vertices we have

exactly the same contributions as in the h′ = 0 theory [19, 20]. We only need evaluate all

the diagrams which contain these extra vertices.

At one loop, besides the h–chiral and the mixed gauge–chiral self–energy diagrams [20]

we have a h′–chiral self–energy graph whose contribution is proportional to |h′|2. This new

diagram modifies the one–loop superconformal condition (2.4) as

[

|h|2
(

1 −
1

N2
|q − q̄|2

)

+ |h′|2
N2 − 4

2N2

]

= g2 (7.4)

in agreement with [61, 7, 14]. As for the h′ = 0 case it is easy to verify that the one–loop

condition is sufficient to guarantee the vanishing of the beta functions (i.e. superconformal

invariance) up to two loops.

Once the theory is made finite we are interested in the perturbative evaluation of

finite corrections to the superpotential. In this case the symmetries of the theory force the

effective superpotential to have the form

Weff = ih

∫

d6zTr[b(q)Φ1Φ2Φ3+b(−q̄)Φ1Φ3Φ2]+
ih′

3
d

∫

d6zTr(Φ3
1+Φ3

2+Φ3
3) + h.c. (7.5)

where the coefficients b and d are determined as double power expansions in the couplings

h and h′ 7. In particular, the invariance under cyclic permutations of the superfields

requires the d correction to be the same for the three Φ3
i terms, whereas the other global

symmetries force the particular q dependence of the corrections to (Φ1Φ2Φ3) and (Φ1Φ3Φ2).

We note that in this case we cannot apply the previous arguments (see the discussion after

eq. (4.1)) to state that b(−q̄) = −b(q) since the perturbative corrections to (Φ1Φ2Φ3) and

(Φ1Φ3Φ2) are not always proportional to q times functions of q2. In fact, it is still true

that diagrams contributing to the effective potential contain an even number of extra chiral

vertices compared to the tree level diagrams, but part of these vertices could be h′–vertices

not carrying any q–dependence.

The topologies of diagrams contributing to the superpotential up to two loops are still

the ones in figure 1 where now chiral vertices may be either h or h′ vertices. Performing

the explicit calculation as in section 4 we discover that at one loop the various terms in the

superpotential do not mix and receive separate corrections still proportional to the classical

7Here we use the superconformal condition (7.4) to express g2 as a function of h and h′. Any other

choice would be equally acceptable.
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terms. Precisely, we find that W
(1)
eff coincides with W , up to an overall constant coefficient.

This is also true at two loops for the diagrams 1c), 1d) and 1e), whereas the diagram 1g)

with all possible configurations of h and h′ vertices mixes nontrivially the various terms

of the superpotential. Similarly to what happens for the β–deformed theory, this leads to

a nontrivial correction W
(2)
eff which has the form (7.5) but with the b and d coefficients

nontrivially corrected by functions of q and N . We then expect descendant operators to

get modified at this order as in the previous case (see discussion around eq. (4.6)).

The exact supergravity dual of the theory (7.1) is still unknown even if few steps

towards it have been undertaken in [4]. However, it is interesting to investigate the nature

of composite operators of the superconformal field theory waiting for the discovery of the

exact correspondence of these operators to superstring states.

The chiral ring for the h′-deformed theory is not known in general (however, see [11]).

Compared to the chiral ring of the β–deformed theory (h′ = 0) which contains operators

of the form Tr(ΦJ
i ), Tr(ΦJ

1 ΦJ
2ΦJ

3 ) plus the particular operators Tr(ΦiΦj), i 6= j, we expect

the chiral ring of the present theory to be more complicated because of the lower number

of global symmetries present.

Here we exploit the general procedure described in section 3 to move the first steps

towards the determination of chiral primary operators. In particular, we concentrate on

the first simple cases of matter chiral operators with dimensions ∆0 = 2, 3 and study

how turning on the h′-interaction may affect their quantum properties. We then take

advantage of these results to make a preliminary discussion of the CPO content for generic

scale dimensions.

7.1 Chiral ring: The ∆0 = 2 sector

Weight–2 chiral operators are Tr(Φ2
i ) and Tr(ΦiΦj), i 6= j. These operators can be classified

as in table 1 according to their charge Q with respect to the Z3 symmetry (7.2).

Q = 0 Q = 1 Q = 2

O11 = Tr(Φ2
1) O33 = Tr(Φ2

3) O22 = Tr(Φ2
2)

O23 = Tr(Φ2Φ3) O12 = Tr(Φ1Φ2) O13 = Tr(Φ1Φ3)

Table 1: Operators with ∆0 = 2.

The charged sectors can be obtained from the Q = 0 one by successive applications

of cyclic Z3–permutations Φi → Φi+1. This is the reason why the three sectors contain

the same number of operators. In the h′ = 0 theory their anomalous dimensions have

been computed up to two loops and found to be vanishing [19, 20]. According to our

discussion in section 3 this was an expected result since for these operators there is no

way to use the equations of motion (2.3) to write them as D̄2X. Therefore they must

be necessarily primaries and belong to the classical chiral ring. Since this sector does not

contain descendants this property is mantained at the quantum level. In the h′ = 0 case

these operators have different U(1) flavor charges and do not mix. The matrix of their

two–point functions is then diagonal and receives finite corrections at two loops [20].
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The same analysis can be applied in the present case. Again, there is no way to write

these operators as descendants by using the classical equations of motion (7.3). Therefore,

we expect them to belong to the chiral ring.

In order to check that these operators do not get renormalized but their correlators

might receive finite corrections we compute directly their two–point functions.

The smaller number of global symmetries surviving the h′–deformation do not prevent

the operators to mix. For instance the operator Tr(Φ2
1) can mix with Tr(Φ2Φ3) since they

have the same charge under the Z3 symmetry (7.2). Therefore, we need compute the

non–diagonal matrix of their two–point functions.

To this purpose we concentrate on the operators O11 and O23 and evaluate all the

correlators up to two loops. The calculation goes exactly as in the h′ = 0 theory with the

understanding of adding contributions from diagrams containing the new h′–vertices.

At one–loop, as in the undeformed [52, 53] and the β–deformed cases [20] we do

not find any divergent nor finite contributions to the two–point functions as long as the

superconformal condition (7.4) holds.

At two loops the topologies of diagrams which contribute to 〈O11Ō11〉 and 〈O23Ō23〉

are the ones in figure 4.

Figure 4: Two–loop diagrams for 〈O11Ō11〉 and 〈O23Ō23〉.

Here the grey bullets indicate two–loop corrections to the chiral propagator and one–

loop corrections to the mixed gauge–chiral vertex. Using the superconformal condition (7.4)

their q, h, h′ dependence disappears and these corrections coincide with the ones of the

N = 4 theory [50, 52, 53]. Therefore the first three diagrams give the same kind of

contribution to both correlators.

The last two diagrams contain chiral vertices and they instead differ in the two cases

for the number of h vs. h′ insertions: Diagram 4d) gives contributions proportional to |h|4

and |h′|4 to 〈O11Ō11〉, and contributions proportional to |h|4 and |h|2|h′|2 to 〈O23Ō23〉.

Analogously, diagram 4e) contributes to 〈O11Ō11〉 with a term proportional to g2|h′|2 and

to 〈O23Ō23〉 with g2|h|2.

Diagrams contributing to the mixed two–point function 〈O11Ō23〉 at two loops are of

the type 4d) with two h and two h′ vertices (contributions proportional to h̄2h′2), with
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three h and one h′ (contributions proportional to |h|2h̄′h) and 4e) with one h and one h′

vertices (contributions proportional to g2hh̄′).

Performing the D–algebra and computing the corresponding loop integrals in momen-

tum space and dimensional regularization, it is easy to verify that the diagrams 4a)–d)

have at most 1/ε poles which correspond to finite corrections to the two–point functions

when transformed back to the configuration space.

The only potential source of anomalous dimension terms would be the graph 4e) since,

after D–algebra, the corresponding integral has a 1/ε2 pole, that is a log (µ2x2) divergence in

configuration space. However, when computing the correlators 〈O11Ō11〉 and 〈O11Ō23〉 this

diagram gives a vanishing color factor, whereas for the third correlator there is a complete

cancellation between the contribution corresponding to a particular configuration of the

Φ̄2, Φ̄3 lines coming out from the Ō23 vertex and the one with the two lines interchanged

(the same happens in the h′ = 0 theory [20]).

Therefore, all the correlators in configuration space are two–loop finite, the anomalous

dimension matrix vanishes and the two operators are protected up to this order.

It is interesting to give the explicit result for the two–loop corrections to the correlators.

We find

〈Tr(Φ2
1)(z1)Tr(Φ̄2

1)(z2)〉2−loops ∼
δ(4)(θ1 − θ2)

[(x1 − x2)2]2
F1

〈Tr(Φ2Φ3)(z1)Tr(Φ̄2Φ̄3)(z2)〉2−loops ∼
δ(4)(θ1 − θ2)

[(x1 − x2)2]2
F2 (7.6)

where

F1 =

[

|h|4
N2 − 4

N2
|q − q̄|2

(

N2 − 1

4N2
|q − q̄|2 − 1

)

+ |h′|4
(N2 − 20)(N2 − 4)

8N4
− |h|2|h′|2

N2 − 4

2N2

(

1 −
1

N2
|q − q̄|2

)]

(7.7)

and

F2 =

[

|h|4
N2 − 4

4N4
|q − q̄|4 + |h′|4

(N2 − 4)2

8N4

+ |h|2|h′|2
N2 − 4

2N2

(

3 −
N2 − 5

N2
|q − q̄|2

)

]

(7.8)

We note that all the g4 contributions cancel and we are left with expressions which vanish

in the N = 4 limit (β = h′ = 0, |h|2 = g2). Moreover, both the contributions survive in

the large N limit in contradistinction to the h′ = 0 case where F2 is subleading [20].

7.2 Chiral ring: The ∆0 = 3 sector

The next sector we investigate contains operators with naive scale dimension ∆0 = 3. We

classify them according to their Z3–charge as in table 2.

We note that the neutral sector does not contain the same number of operators as

the charged ones. This is due to the fact that, in contradistinction to the previous case,
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Q = 0 Q = 1 Q = 2

O1 = Tr(Φ3
1) O6 = Tr(Φ2

1Φ2) O9 = Tr(Φ2
1Φ3)

O2 = Tr(Φ3
2) O7 = Tr(Φ2

2Φ3) O10 = Tr(Φ2
3Φ2)

O3 = Tr(Φ3
3) O8 = Tr(Φ2

3Φ1) O11 = Tr(Φ2
2Φ1)

O4 = Tr(Φ1Φ2Φ3)

O5 = Tr(Φ1Φ3Φ2)

Table 2: Operators with ∆0 = 3.

the Q = 0 sector is closed under the application of cyclic permutations Φi → Φi+1 and

tranformations (2.2). Therefore, we cannot generate the charged sectors from the neutral

one by using these mappings.

The charged sectors are also closed under permutations but they get exchanged under

transformations (2.2). This is the reason why they still have the same number of operators.

We first focus on the set of operators with Q = 0. As for the h′ = 0 theory, in this

sector the Konishi anomaly enters the game when we try to use the equations of motion to

write descendants which involve O4 and O5. However, as discussed in section 6, the Konishi

anomaly can be neglected as long as we are interested in the construction of CPO’s up to

two loops. We will then restrict our analysis at this order.

Using the equations of motion (7.3) we can write three descendant operators

D(1) = h (qO4 − q̄O5) + h′ O1

D(2) = h (qO4 − q̄O5) + h′ O2 (7.9)

D(3) = h (qO4 − q̄O5) + h′ O3

According to the discussion of section 3 we expect to single out two protected operators.

We consider the most general linear combination

P = αO1 + β O2 + γ O3 + δO4 + εO5 (7.10)

and require tree-level orthogonality to the three descendants. These constraints provide

the condition α = β = γ ≡ a (as expected because of the Z3 symmetries of this sector)

and the extra relation

3ah̄′(N2 − 4)q + h̄
[

δ
(

N2 − 2 + 2q2
)

− ε
(

(N2 − 2)q2 + 2
)]

= 0 (7.11)

which can be used to express a in terms of two arbitrary constants.

Any CPO in this sector has then the following form

P = a (O1 + O2 + O3) + δO4 + εO5 (7.12)

An explicit check on its two–point function at one loop leads to 〈P P̄〉1 finite, independently

of the choice of δ and ε. One can choose the two constants in order to select two mutually

orthogonal operators.
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As it happened in the previous cases, these operators are guaranteed to be protected

up to two loops as a consequence of their one–loop protection plus the result W
(1)
eff ∼ W

which insures that the classical descendants (7.9) keep being good descendants also at one

loop.

The sectors characterized by Z3 charges Q = 1, 2 do not contain protected operators.

In fact, one can see that any charged operator in table 2 can be written as Oi = D̄2Xi by

using the classical equations of motion. We expect this result to be valid at any order of

perturbation theory since the structure of the effective superpotential for what concerns

its superfield dependence cannot change.

To summarize, in the ∆0 = 3 sector we have found two protected operators which

are linear combinations of Tr(Φ3
i ), i = 1, 2, 3, Tr(Φ1Φ2Φ3) and Tr(Φ1Φ3Φ2). We note that

among all possible weight–3 operators these are the only ones which belong to the chiral

ring of the β–deformed theory. The rest of weight–3 operators which were descendants for

h′ = 0 keep being descendants.

The protected operators we have found are neutral under the Z3 symmetry (7.2). As

discussed in [11], the neutral sector of the chiral ring (the untwisted sector) coincides with

the center of the quantum algebra generated by the F–terms constraints. In particular, for

the h′–deformation one element of the center has been constructed explicitly (eq. (4.83)

in [11]). This element coincides with one of the CPO’s (7.12) we have found, once we set

D(i) = 0 in the chiral ring (see eq. (7.9)), use these identities to express the operator O5 in

terms of the other ones and make a suitable choice for the coefficients δ and ε.

7.3 Comments on the general structure of the chiral ring

The ∆0 = 2, 3 sectors studied in the previous section are very peculiar and do not provide

enough informations to guess the structure of the sectors for generic scale dimension. In

fact, for ∆0 = 2 no descendants are present and we cannot even apply the orthogonality

procedure to construct CPO’s. The ∆0 = 3 sector contains only protected operators which

are Z3 neutral and are linear combinations of “old” CPO’s, that is operators which were

protected for h′ = 0.

A naive generalization of our results to higher dimensional sectors would lead to the

conjecture that the chiral ring for the h′–deformed theory, at least for what concerns

its neutral sector with ∆0 = 3J , would be given by linear combinations of Tr(Φ3J
i ) and

Tr(ΦJ
1 ΦJ

2 ΦJ
3 ). However, we expect more general operators of the form Tr(Φ3J−m−n

1 Φm
2 Φn

3 ),

m + 2n = mod(3) to appear. Moreover, nontrivial Z3–charged sectors should appear for

∆0 = 3J even if they are absent in the particular case ∆0 = 3.

To investigate these issues we should extend our analysis to higher dimensional sectors

and this would require quite a bit of technical effort. However, without entering any

calculative detail, but simply performing dimensional and Z3–charge balances we can figure

out few general properties of the Q–sectors of the chiral ring.

We consider the generic chiral operator O1 = (Φa
1Φ

b
2Φ

c
3) for any trace structure with

scale dimension ∆0 = a+b+c and Z3–charge Q1 ≡ b+2c with respect to the symmetry (7.2).

We now perform Φi ↔ Φj exchanges according to the symmetry (2.2) and Z3 permu-

tations. In this way of doing we generate all the operators with the same trace structure
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in a given ∆0 sector. Let us consider for example the operators O2 = (Φa
2Φ

b
1Φ

c
3) and

O3 = (Φa
3Φ

b
1Φ

c
2) obtained by a Φ1 ↔ Φ2 exchange and a cyclic permutation, respectively.

They have charges Q2 = a + 2c and Q3 = 2a + c. It is easy to see that if ∆0 = 3J then

Q2 = Q3 = 0 (mod(3)) iff Q1 = 0 (mod(3)). This property holds for any operator that

we can construct from O1 by the application of the two discrete symmetries. On the other

hand, if Q1 = 1, 2(mod(3)) operators obtained from it by cyclic permutations still mantain

the same charge, but the application of field exchanges (2.2) map charge–1 operators into

charge–2 operators and viceversa.

Therefore, for ∆0 = 3J the Q = 0 class is closed under the action of Z3–permutations

and (2.2) symmetry, and being independent, may contain a different number of operators

compared to the charged sectors which instead are related by (2.2) mappings. In particular,

as it happens for ∆0 = 3 charged classes of the chiral ring might be empty while the

corresponding neutral one is not.

If ∆0 6= 3J a simple calculation leads to the conclusion that starting from operators

with zero Z3–charge we generate operators with Q = 1 by applying Φ1 ↔ Φ2 if ∆0 = 3J +1

and a cyclic permutation if ∆0 = 3J +2. Correspondingly, we obtain operators with Q = 2

by applying a cyclic permutation in the first case and a Φ1 ↔ Φ2 exchange in the second

case. Therefore, in any sector with ∆0 6= 3J the number of operators with Q = 1 is the

same as the ones with Q = 2 and coincides with the number of neutral operators.

If we apply the same reasoning to the descendant operators of each sector (to simplify

the analysis we work at large N to avoid mixing among different trace structures) we

discover that every time ∆0 6= 3J the descendants of the charged classes can be obtained

from the neutral ones by field exchanges. As a consequence, the three classes contain the

same number of descendants and then the same number of protected operators.

To summarize, the sectors of the chiral ring behave differently according to their scale

dimension: If ∆0 6= 3J the corresponding operators are equally split into the three Q

classes. On the contrary, if ∆0 = 3J the neutral class is independent and may contain a

different number of CPO’s.

As a further example we have studied the ∆0 = 4 operators. In the large N limit and at

the lowest order in perturbation theory we have found that the neutral single–trace sector

contains one independent CPO (we have eight single–trace chirals and seven descendants).

Therefore, we conclude that also the charged sectors contain one single protected operator

and we know how to construct it once we have found the Q = 0 operator explicitly. In the

single–trace sector the protected operator turns out to be a linear combination of

Tr(Φ4
1)

Tr(Φ1Φ
3
2) , Tr(Φ1Φ

3
3) , Tr(Φ2

2Φ
2
3) , Tr(Φ2Φ3Φ2Φ3)

Tr(Φ2
1Φ2Φ3) , Tr(Φ2

1Φ3Φ2) , Tr(Φ1Φ2Φ1Φ3) (7.13)

It remains the open question whether for ∆0 = 3J , J > 1, the charged sectors are

trivial as in the weight–3 case. A systematic analysis of the charged protected operators

is a difficult task in general. However, working at large N it is easy to realize that for J

even and J > 1, there are nontrivial protected operators for Q = 1 and Q = 2. These are
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operators with the 3J chiral superfields split into the maximal number of traces allowed by

SU(N), i.e. 3J/2. In fact, for these operators it is impossible to exploit the equations of

motion and write them as descendants. For J odd the same arguments do not lead to any

definite conclusion. However, we expect to generate nontrivial charged protected operators

by multiplying the neutral CPO’s of weight 3 previously constructed by 3(J − 1)/2 traces

containing two operators each and carrying the right Z3 charge.

8. Conclusions

In this paper we have considered N = 1 SU(N) SYM theories obtained as marginal

deformations of the N = 4 theory. In particular, we have focused on the perturbative

structure of the matter (not gauge) quantum chiral ring defined as in (3.9) in terms of the

effective superpotential. According to our general prescription, CPO’s can be determined

by imposing order by order the orthogonality condition (3.6) to all the descendants of

a given sector. This requires constructing first the descendants as a power expansion in

the couplings. According to the definition (3.9), this can be easily accomplished once the

effective superpotential is known at a given order.

For the Lunin–Maldacena β–deformed theory (2.1) we have studied quite extensively

the spin–2 sector of the theory. For the particular examples of weights (J, 1, 0) and (2, 2, 0)

we have considered, a special pattern arises which allows for a drastic simplification in the

study of the orthogonality condition: In any of these sectors descendants can be always

constructed at tree level which turn out to be good independent descendants even at the

quantum level. This is due to the particular form (4.1) of the superpotential and the

peculiar way the equations of motion work which allow for constructing q–independent

descendants, insensible to the quantum corrections of the theory. This property persists

even for other examples of the form (J1, J2, 0). Therefore, we conjecture that it might

be a property of the entire spin–2 sector: For any weight (J1, J2, 0) quantum descendant

operators can be constructed which coincide with the descendants determined classically.

We have then studied the spin–3 sector. In this case the determination of quantum

descendants of weights (J1, J2, J3) cannot ignore the Konishi anomaly term. Being its effect

of order λ it only enters nontrivially the orthogonality condition from two loops on, that is

it will affect the form of the protected operators at least at three loops. For weights (1, 1, 1)

and (2, 1, 1) we have determined the CPO’s up to two loops. In particular, for the first

case we have proved that up to this order the correct CPO is the one found in [19]. Higher

order calculations would require computing two–point correlation functions between matter

chiral operators and Tr(W αWα). It would be interesting to pursue this direction since it

represents the first case where the descendant operators, apart from acquiring an explicit

dependence on the Konishi anomaly term, get modified nontrivially at the quantum level

due to the nontrivial corrections to the superpotential which start appearing at order λ2.

We have extended our procedure to the study of protected operators for the full Leigh–

Strassler deformation. We can think of this theory as a marginal perturbation of the β–

deformed theory induced by the h′–terms in (7.1). In this case the determination of the

complete chiral ring is a difficult task and only few insights have been discussed in [11].
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We have moved few steps in this direction by studying perturbatively the simple ∆0 = 2, 3

sectors. For operators of scale dimension two we have found that the h′–deformed theory

has still the same CPO’s as the h′ = 0 one, i.e. Tr(Φ2
i ) and Tr(ΦiΦj), i 6= j.

For the ∆0 = 3 sector we have found a two–dimensional plane of CPO’s given as linear

combinations of the CPO’s of the corresponding h′ = 0 theory, i.e. Tr(Φ3
i ) and Tr(Φ1Φ2Φ3).

In fact, in this case the lower number of global symmetries surviving the deformation allows

for mixing among the operators who were protected in the previous case and belonged to

different U(1)×U(1) sectors. The class of protected operators we have found contains the

central element of the quantum algebra proposed in [11].

What turns out is that in the ∆0 = 2 sector the chiral ring is made by operators

which are both charged and neutral with respect to the Z3–symmetry (7.2) that the theory

inherits from the parent h′ = 0 theory. On the other hand, in the ∆0 = 3 sector all CPO’s

we can construct are neutral under (7.2). The generalization of our results to higher

dimensional sectors leads to the result that the chiral ring for the h′–deformed theory can

be divided into two subsets: Sectors with scale dimension ∆0 = 3J have an independent

Q = 0 class which may contain in general a different number of CPO’s. Instead, whenever

∆0 6= 3J we can generate the chiral primary operators of the charged classes from neutral

CPO’s by the use of the other discrete symmetries, i.e. cyclic permutations of the three

superfields and the symmetry (2.2). It then follows that the three classes contain the

same number of protected operators. In particular, for any non–empty neutral sector (for

instance ∆0 = 2, 4) the corresponding charged ones are nontrivial. Neutral CPO’s will be in

general linear combinations of operators of the form Tr(ΦJ−m−n
1 Φm

2 Φn
3 ) with m + 2n = 3p.

The Z3 periodicity we have found in the chiral ring structure should have a counterpart

in the spectrum of BPS states of the dual supergravity theory. Therefore, it might be of

some help in the construction of the dual spectrum.

For all the cases we have investigated the CPO’s do not get corrected at one–loop,

whereas they start being modified at order λ2. This one–loop non–renormalization found

for a large class of chiral operators is probably universal for all the CPO’s and might be

traced back to the one–loop non–renormalization properties of the theories. Precisely, the

conditions (2.4), (7.4) which insure superconformal invariance at one–loop are maintained

at two loops, i.e. the superconformal theories at one and two loops are the same. It is then

natural to speculate that the corresponding chiral rings should be the same. The theory

instead changes at three loops where the superconformal condition gets modified by terms

of order λ2 [21]. Therefore we expect that at this order the chiral ring will be modified by

effects of the same order.
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A. Integrals in momentum space

In this appendix we list the results for loop integrals that we have used along the calcula-

tions. Working in momentum space and dimensional regularization (n = 4 − 2ε) we give

the results as ε expansions.

We begin by considering the momentum integrals associated to the one–loop and two–

loop diagrams in figure 1 for the perturbative corrections to the superpotential.

At one loop, after performing D–algebra, the diagram 1b) gives the standard triangle

contribution [62]. Assigning external momenta pi (p1 + p2 + p3 = 0) we have

p2
3

∫

dnq

(2π)n
1

q2(q − p2)2(q + p1)2
=

1

(4π)2
Φ(1) (x, y) + O(ε) (A.1)

where

x ≡
p2
1

p2
3

and y ≡
p2
2

p2
3

(A.2)

The p2
3 in front of the integral is produced by D–algebra. The function Φ(1)(x, y) can be

represented as a parametric integral

Φ(1)(x, y) = −

∫ 1

0

dξ

y ξ2 + (1 − x − y)ξ + x

(

log
y

x
+ 2 log ξ

)

(A.3)

Since we look for a local contribution to the superpotential we are interested in the result

of the integral for external momenta set to zero. A consistent way [63] to take the limit of

vanishing external momenta is to set p2
i = m2 for any i so having x, y = 1 and let the IR

cut–off m2 going to zero at the end of the calculation. In the limit we obtain a finite local

result [63]

−

∫ 1

0
dξ

log ξ(1 − ξ)

1 − ξ(1 − ξ)
(A.4)

At two loops two types of integrals appear. From diagrams 1c) and 1d) we have integrals

of the form

(p2
3)

2

∫

dnq dnr

(2π)2n

1

(r + p1)2(q + p1)2(r − p2)2(q − p2)2r2(q − r)2
=

=
1

(4π)4
Φ(2) (x, y) + O(ε) (A.5)

with x and y as in (A.2). The function Φ(2)(x, y) is defined by [62]

Φ(2)(x, y) = −
1

2

∫ 1

0

dξ

y ξ2 + (1 − x − y)ξ + x
log ξ

(

log
y

x
+ log ξ

)(

log
y

x
+ 2 log ξ

)

(A.6)

As in the one–loop case, the limit x, y → 1 gives a finite local contribution to the effective

superpotential.

From diagrams 1c)–g) this kind of integral also appears

p2
3

∫

dnq dnr

(2π)2n

1

q2 r2(q − r)2(q − p3)2(r − p3)2
=

1

(4π)4
6ζ(3) + O(ε) (A.7)
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where one of the external momenta has been already set to zero (in this case we can safely

set one of the external momenta to zero from the very beginning since we do not introduce

fake IR divergences). This is already the local finite contribution we obtain by setting also

p2
3 = 0.

When we deal with two-point correlation functions, at tree-level we have (k = ∆0 is

the free scale dimension of the operators involved and p is the external momentum)

∫

dnq1 . . . dnqk−1

(2π)n(k−1)

1

q2
1(q2 − q1)2(q3 − q2)2 . . . (p − qk−1)2

=
1

ε

[

1

(4π)2

]k−1 (−1)k

[(k − 1)!]2
(p2)k−2−(k−1)ε + O(1) (A.8)

At two loops we are interested in the four diagrams listed in figure 3. From the

graph 3a) we obtain

∫

dnq3 . . . dnqk−1

(2π)n(k+1)

1

(q4 − q3)2 . . . (p − qk−1)2
×

∫

dnk dnl dnr dns r2(q3 − l)2

k2l2(k − l)2(r − k)2(r − l)2(s − l)2(r − s)2(q3 − r)2(q3 − s)2
(A.9)

=
1

ε

[

1

(4π)2

]k+1 (−1)k(k − 1)

[(k − 1)!]2(k + 1)
[6ζ(3) − 20ζ(5)](p2)k−2−(k+1)ε + O(1)

The momentum integral for the graph 3b) gives

∫

dnq3 . . . dnqk−1

(2π)n(k+1)

−q2
3

(q4 − q3)2 . . . (p − qk−1)2
×

∫

dnk dnl dnr dns

k2l2(k − l)2(r − k)2(s − l)2(r − s)2(q3 − r)2(q3 − s)2
(A.10)

=
1

ε

[

1

(4π)2

]k+1 (−1)k(k − 1)

[(k − 1)!]2(k + 1)
40ζ(5)(p2)k−2−(k+1)ε + O(1)

Finally, the graphs 3c) and 3d) lead to the same contribution

∫

dnr dnq2 . . . dnqk−1

(2π)n(k+1)

1

(q2 − r)2(q3 − q2)2 . . . (p − qk−1)2
×

∫

dnk dnl

k2l2(k − l)2(r − k)2(r − l)2
(A.11)

=
1

ε

[

1

(4π)2

]k+1 (−1)k(k − 1)

[(k − 1)!]2(k + 1)
6ζ(3)(p2)k−2−(k+1)ε + O(1)
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